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Axial compression bending tests on carbon films
and carbon fiber composites

M. SHIOYA∗, M. NAKATANI, K. NAKAO
Department of Organic and Polymeric Materials, Tokyo Institute of Technology,
2-12-1 O-okayama, Meguro-ku, Tokyo 152, Japan
E-mail: mshioya@o.cc.titech.ac.jp

A. TAKAKU
Seitoku University, 531 Sagamidai, Matsudo-shi, Chiba 271, Japan

It is often desired to conveniently estimate the strength of materials by using specimens
with small sizes. For this purpose, axial compression bending tests were examined by using
carbon films and carbon fiber/epoxy resin unidirectional composite strands. The bending
strength estimated from the axial displacement and the compression load coincided with
the bending strength estimated from the deflection and the compression load. The carbon
films showed specimen length dependence of the bending strength. The carbon fiber
composite strand with a short specimen length produced a falling load compression curve.
It was shown that the bending strength of the specimens showing falling load compression
curves can be practically estimated by using the effective cross-section sizes at fracture.
This analysis method is preferable also in order to minimize the error in the bending
strength caused by the error in the cross-section size. C© 1999 Kluwer Academic Publishers

1. Introduction
In the studies for developing advanced materials, it is
often desired to conveniently estimate mechanical
properties of the materials by using specimens with
small sizes. This requirement frequently arises in the
studies of carbons prepared by pyrolysis since the size
of the furnace for the heat-treatment impose the limita-
tion on the size of the specimen and it is time consum-
ing and costly to prepare a large amount of specimens
with a larger size. For the conventional tensile tests,
the specimen should be large enough to grip the speci-
men without slippage and fracture during the tests. On
the other hand, for the bending tests by means of axial
compression, there is no limitation on the size of the
specimen with relation to the gripping problem.

The three- and four-point bending tests are widely
used techniques to conveniently obtain the bending
strength and the bending modulus. It has been pointed
out, however, that these bending tests are insufficient
for advanced composite materials because local frac-
ture tends to occur at the loading points due to stress
concentration [1]. In order to avoid this unfavorable
stress concentration, specially designed loading zigs
have been developed [2]. Fukuda proposed a method
and a loading zig for the axial compression bend-
ing tests to overcome the disadvantages of the three-
and the four-point bending tests [3]. The axial com-
pression bending tests have been utilized to estimate
the mechanical properties of the curved specimens of
thermoplastic composites fabricated by filament wind-
ing [4].
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In the present study, the axial compression bend-
ing tests are carried out on the specimens with small
sizes without using a special loading zig. Carbon films
and carbon fiber/epoxy resin unidirectional composite
strands are tested with this method. The problems aris-
ing with this method are elucidated and an analysis
method to overcome these problems is shown.

2. Theoretical
2.1. Axial compression bending of bar
Schematics of the axial compression bending test and
the coordinate system used for analysis are shown in
Fig. 1. A compression load,F , is applied to the bar,
O′R′, with length,L, in thex direction without apply-
ing a bending moment at both ends of the bar. If the
compression load is increased beyond a critical load,
Fc, the bar buckles into a curveOQR. The curvature
of the bar is given by−dθ/ds wheres is the distance
measured along the axis of the bar from the originO
andθ is the angle between the axis of the bar andx axis.
The bending moment of the bar at a position (x, y) is
Fy. Thus, by neglecting the changes in length of the bar
due to compression, the following differential equation
is obtained.

E I
dθ

ds
= −Fy (1)

whereE is the bending modulus andI the moment of
inertia of area. Sincey is related tos by the equation,

dy

ds
= sinθ (2)
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Figure 1 Schematic of axial compression bending test.

the differential equation takes a form,

d2θ

ds2
= −k2 sinθ (3)

where

k =
√

F

E I
(4)

The deflection curve obtained by solving the exact dif-
ferential equation shown above is called the elastica,
and the derivation is shown in a text book [5]. In the
following, the results obtained by solving Equation 3
are shown briefly.

For the bar to buckle, the compression loadF should
be larger than a critical loadFc.

F ≥ Fc = π2E I

L2
(5)

The value ofθ at the end of the bar,α, is determined
in response to the compression load as follows:

kL = 2K(p) (6)

p = sin
α

2
(7)

whereK(p) is the complete elliptic integral of the first
kind defined as

K(p) =
∫ π/2

0

1√
1− p2 sin2 φ

dφ (8)

Thus, the inclination angleα is determined from the
values ofE, I , L andF .

The deflection curve (x, y) and the distances can be
calculated as follows:

x = L

K(p)

∫ π/2

φ

[√
1− p2 sin2 φ

− 1

2
√

1− p2 sin2 φ

]
dφ (9)

y = Lp

K(p)
cosφ (10)

s= L

2
− L

2K(p)

∫ φ

0

1√
1− p2 sin2 φ

dφ (11)

In these equations, the angleφ is defined as

sin
θ

2
= p sinφ (12)

That is,φ varies continuously along the bar from 0 at
the pointQ to π/2 at the pointO. Thus, by changing
φ in the range from 0 toπ/2 and calculating the values
of x and y, the deflection curveQO is obtained. The
deflection curveQRis symmetrical with the curveQO.

The parameters characterizing the deflection curve
involve axial displacement,δa, deflection,δt and radius
of curvature at pointQ, ro. These parameters are given
as follows:

δa

L
= 2

[
1− E(p)

K(p)

]
(13)

δt

L
= p

K(p)
(14)

ro

L
= t

(|εt | + |εc|)L =
1

4pK(p)
(15)

wheret is the thickness of the bar in they direction
before bending,εt andεc are the strains at the convex
and the concave sides of the bar at the pointQ, and
E(p) is the complete elliptic integral of the second kind
defined as

E(p) =
∫ π/2

0

√
1− p2 sin2 φ dφ (16)

It should be noted that for a given lengthL, the deflec-
tion curve and the parameters shown above are deter-
mined only by the inclination angleα.

The axial tensile and compressive stresses in the bar
reach maximum at the convex and the concave sides of
the bar at the pointQ, respectively. The bar fractures
when the maximum stress reaches either of the tensile
or the compression strength of the bar, whichever is
smaller. By denoting the compression load at fracture
as Fb, the tensile or the compression strength,σb, is
given by the equation

σb = tδt Fb

2I
(17)
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whereδt here is the deflection at fracture. For a bar
with a rectangular cross-section with thicknesst and
width b,

I = 1

12
bt3 (18)

For a bar with a circular cross-section with radiusR,

t = 2R (19)

and

I = π

4
R4 (20)

Therefore, if any one of axial displacement, deflec-
tion, radius of curvature or inclination angle is mea-
sured at fracture, the deflection in Equation 17 is ob-
tained directly or calculated by using Equations 13
to 15, and the tensile or the compression strength of
the bar is estimated with the compression load at frac-
ture. If the critical load can be measured, the modulus
of the bar is estimated by using Equation 5.

2.2. Effective specimen length
For testing the specimens which show the length de-
pendence of the strength, it is important to know the
length of the specimen over which the tensile and com-
pressive stresses are effectively imposed by the axial
compression bending. Let us define the effective speci-
men length,so, as the length of the part of the specimen
in which the axial stress exceeds a certain stress level.
Then, the effective specimen length is estimated as fol-
lows: The axial stress,σ , at a distancez from the neutral
plane in an arbitrary cross-section of the specimen is
given by

σ = zyF

I
(21)

The stressσ reaches maximum in the central cross-
section of the specimen sincey reaches maximum. By
definingβ as the ratio of the stressσ in an arbitrary
cross-section against the maximum stress at the same
distancez in the central cross-section, the following
equation is obtained from Equations 10 and 21.

β = cosφ (22)

Thus, the effective specimen length where the axial
stress exceedsβ times maximum axial stress is given
by the equation

so = L − 2s (23)

whereφ for calculatings is given by the inverse func-
tion of Equation 22. It can be shown that the effective
specimen length at fracture is a function ofβ, σb/(t E)
andL.

The variation of the effective specimen length with
the length of the specimen tested is shown in Fig. 2
for various values ofσb/(t E) andβ = 0.9. It is known
that when the specimen length is less than 50 mm, the
effective specimen length varies almost in proportion
to the length of the specimen tested.

Figure 2 Effective specimen length,so, as a function of specimen length,
L, for β = 0.9 and various values ofσb/(t E) shown in figure in units of
m−1.

2.3. Shear stress arising during axial
compression bending

For the composite strands, the interfacial shear strength
between the fiber and the matrix resin is usually much
lower than the tensile or the compressive strength of the
composite strands. Thus, it is worthwhile to know the
values and the distribution of the shear stress arising
during axial compression bending.

When the bar is bent by the axial compression load,
not only normal stresses but also shear stresses are pro-
duced in a cross-section of the bar. In an arbitrary cross-
section of the bar at a distances from the end of the
bar, an orthogonal coordinate system,z-w, is defined
so that thez axis is included in the cross-section and
the x-y plane as shown in Fig. 3. If the cross-section
is symmetrical with respect toz-s plane, the tangents
to the boundary of the cross-section at pointsU and
V intersect at a pointT on thez axis. The following
two assumptions can be adopted for the shear stress,τ ,
in the cross-section. First, the shear stress at any point
of the line UV is directed toward or away from the

Figure 3 Shear stress produced during axial compression bending.
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point T . Second, the components of the shear stresses
parallel to thez axis,τz, are equal for all points of the
line UV. It is known that the above two assumptions
give satisfactory accuracy for practical application [6].
Then, the shear stress at a position (z, w) is given by
the equation [6],

τ = P

Ib(z) cosξ

∫ z0

z
b(z)zdz (24)

whereb(z) is the length of the lineUV and P is the
shear force acting in the cross-section.

P = F sinθ (25)

Thus, for a bar with a rectangular cross-section with
thicknesst and widthb, the shear stress is given by

τ = 3

2
σc sinθ

[
1−

(
2z

t

)2
]

(26)

where

σc = F

bt
(27)

For a bar with a circular cross-section with radiusR,
the shear stress is given by

τ = 4

3
σc sinθ

√√√√√(w
R

)2( z

R

)2

+
[

1−
(

z

R

)2
]2

(28)
where

σc = F

πR2
(29)

It should be noted that the distribution profiles, in thez-s
plane, of the shear stress normalized by the maximum
value are the same for bars with rectangular and circular
cross-sections sincez-dependent terms in Equations 26
and 28 coincide atw= 0 andR= t/2.

The contour map, in thez-s plane, of the shear stress
τ normalized by the maximum value is shown in Fig. 4.
This distribution profile was calculated at the axial dis-
placement of 0.08 times the length of the bar. The con-
tour maps, in thez-w plane, of the shear stressτ norma-
lized by the maximum value in this plane are also shown
in Fig. 4 for rectangular and circular cross-sections.

When the shear stress acts in the cross-section per-
pendicular to the axis of the bar, a shear stress also
arises in the cross-section parallel to the axis of the bar.
It is known from the equilibrium of the moment due to
shear forces that the shear stressτs in the longitudinal
cross-section parallel to the neutral plane, which is di-
rected parallel to the axis of the bar, has an equivalent
intensity to the shear stressτz in the transverse cross-
section. Since the shear stressτz equalsτ whereξ = 0,
the distribution of the shear stressτs in thez-s plane is
the same as the distribution of the shear stressτ shown
in the left side of Fig. 4. In actual axial compression

Figure 4 Contour maps, inz-s andz-w planes, of shear stresses,τ , aris-
ing in rectangular and circular cross-sections during axial compression
bending. Contour map inz-s plane was calculated at axial displacement
of 0.08 times length of bar. Values in figure show shear stresses normal-
ized by maximum values in respective planes.

bending tests, the shear force applied at the end of the
bar is not uniformly distributed over the entire cross-
section but rather concentrated on a contact point with
the loading base. Thus, at the very end of the bar, the
shear stress distribution may be disturbed. It is consi-
dered, however, that except for this limited region, the
shear stressτs is distributed as shown in the left side of
Fig. 4.

3. Experimental
3.1. Specimens
Polycarbodiimide(PCDI)-based carbon films [7, 8] are
attractive materials in applications as the base-plates
for information-recording hard-discs and the separators
for fuel cells. The axial compression bending tests were
carried out on the PCDI-based carbon films processed
at temperatures from 600 to 2500◦C. The specimens
were 10 mm long and 1 mm wide, and 50 mm long and
5 mm wide. The thicknesses of the specimens were 150
and 250µm.

The axial compression bending tests were also car-
ried out on carbon fiber/epoxy resin unidirectional
composite strands. The fibers used were two types of
polyacrylonitrile(PAN)-based carbon fibers denoted as
T4 and H4 and a pitch-based carbon fiber, X5. These
fibers were in the form of continuous filament yarn and
the characteristics of these fibers are given in Table I.
The compressive strength of the fibers determined with
micro-compression tests on single-filaments [9] is also
included in Table I. The epoxy resin used was a mix-
ture of diglycidylether of bisphenol A-type epoxy resin,
methylnadic acid anhydride, benzyldimethylamine and
methyl ethyl ketone by the weight ratio of 100 : 90 :
2.5 : 15. A single fiber tow was soaked in liquid epoxy
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TABLE I Characteristics of carbon fibers used for composite strands

Filament number Diameter Tensile strengtha Compressive strengthb

Fiber per tow (µm) (GPa) (GPa)

T4 12000 6.81 4.9 2.0
H4 12000 6.42 4.4 1.6
X5 4000 10.1 3.6 0.51

aEstimated with tensile tests on 100 mm long composite strands by dividing fracture load with fiber cross-section area.
bEstimated with micro-compression tests on single-filaments [9].

resin, passed through a circular die to adjust fiber vol-
ume fraction, and wound on a frame. By leaving the
resin impregnated fiber two at room temperature for
18 h, the methyl ethyl ketone was evaporated. Then,
the resin impregnated fiber tow was cured in an air
circulating oven at 110◦C for 2 h and additionally at
150◦C for 1 h. The composite strands prepared in this
way had circular cross-sections.

3.2. Axial compression bending test
The axial compression bending tests were carried out
by using a universal tester (Tensilon, Orientec). The
specimen was axially compressed between two metal
bases as shown in Fig. 1. The metal bases had a groove
or a dimple for the tests of the films and the composite
strands, respectively, in order to prevent recoiling of
the specimen. The groove was 0.7 mm wide, 0.06 mm
deep, and having an arced cross-section 1 mm in radius.
The dimple was 1.2 mm in diameter, 0.2 mm deep, and
having a spherical surface 1.0 mm in radius. The ends of
the composite strands were ground into a hemispherical
shape with sandpaper.

The deformation of the specimen was monitored by
using a charge-coupled device camera from the normal
direction to the bending. From the images of the speci-
men and a scale placed nearby, the deflection was mea-
sured. The axial displacement was calculated from the
loading time and the crosshead speed. The crosshead
speeds were 0.2 and 5 mm min−1 for the 10 and 50 mm
long carbon films, respectively, and 0.5 mm min−1 for
the composite strands.

3.3. Sonic modulus
The sonic propagation velocity of the specimen in free
state was measured as follows [10]: First, the speci-
men was placed on a rubber board and a transmitter
and a receiver made of piezotransducers were pressed
on the specimen from above. Then, the time interval
from the issuance of 1 MHz ultrasonic waves to re-
ception was measured. From the changes in the time
interval with the distance between the transmitter and
the receiver, the sonic propagation velocity,C, was de-
termined. The sonic modulus,Es, was calculated by
using the equation,

Es = ρC2 (30)

whereρ is the density of the specimen. The sonic mod-
ulus of carbon fiber unidirectional composite strands
measured in free state coincides with the tensile modu-

lus determined from the initial slope of the stress-strain
curves [10].

3.4. Density and fiber volume fraction
The densities of carbon films, composite strands, car-
bon fibers and matrix resin plate which was cured with
the same conditions as the composite strands were mea-
sured at 30◦C by a sink-float method using an-heptane,
carbon tetrachloride and ethylene dibromide mixture.

The fiber volume fraction,v f , in the composite strand
was calculated by using the equation,

ρc = v f ρ f + (1− v f )ρm (31)

whereρc, ρ f andρm are the densities of the composite
strand, carbon fiber and matrix resin.

4. Results and discussion
4.1. Compression curves
The compression curve representing load-axial dis-
placement relation during the axial compression bend-
ing test on a PCDI-based carbon film 50 mm long,
150 µm thick and processed at 2200◦C is shown in
Fig. 5. In this figure, the compression curve predicted
from Equations 4, 6 and 13 withEI = 3.80× 10−5 Nm2

and L = 50 mm is also shown. The critical point at
which pure compression changes into bending is not

Figure 5 Load-axial displacement diagram of axial compression bend-
ing test on PCDI-based carbon film. Film is 50 mm long, 150µm thick
and processed at 2200◦C. Experimental result (-) and values calculated
with E I = 3.80× 10−5 Nm2 andL = 50 mm (. . .) are shown.
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Figure 6 Load-axial displacement diagrams of axial compression bend-
ing tests on T4 fiber composite strands. Composite strands are 1.2 mm
in diameter and lengths are shown in figure. Experimental results (-) and
values calculated withEI= 4.16× 10−2, 3.96× 10−2 and 3.91× 10−2

Nm2 respectively forL = 50, 70 and 100 mm (. . .) are shown.

revealed for the carbon film since the film is not per-
fectly straight and the loading point may be slightly
eccentric in the actual tests. The compression curve at
later stage, however, follows the prediction of the the-
ory almost exactly.

The compression curves of the T4 fiber composite
strands 50, 70 and 100 mm long and 1.2 mm in diame-
ter are shown in Fig. 6. In this figure, the compression
curves predicted withEI= 4.16× 10−2, 3.96× 10−2

and 3.91× 10−2 Nm2 respectively forL = 50, 70 and
100 mm are also shown. The compression load is largest
for the shortest specimen as is predicted from the the-
ory. The measured compression curves, however, do not
follow the prediction of the theory, and the deviation
from the theory is largest for the shortest specimen. For
the 50 mm long composite strand, the load decreases
with increasing axial displacement after the specimen
buckled, which is opposite to the theory.

In order to see whether the compression curve for
the 50 mm long composite strand is reversible during
loading and unloading, cyclic axial compression bend-
ing tests were carried out. The compression curves at
the first and the fourth cycles are shown in Fig. 7. The
rapid decrease in compression load with axial displace-
ment observed for the first loading does not take place
during later loading. The compression curve during un-
loading does not follow the compression curve during
loading, and a hysteresis loop is produced. Except for
the first loading, the compression curves during load-
ing and those for unloading, respectively, almost co-
incide. The residual axial displacement after returning
the compression load to zero is quite small.

The falling load compression curve and the hystere-
sis loop appearing in Fig. 7 are not due to the machine
strain of the loading instrument. This was confirmed by
carrying out cyclic axial compression bending tests on
a strip of a carbon tool steel (JIS:SK2) 42 mm long,
8.7 mm wide and 0.38 mm thick. These sizes of the

Figure 7 Load-axial displacement diagrams of cyclic axial compression
bending tests on T4 fiber composite strand. Composite strand is 50 mm
long and 1.2 mm in diameter. Loading and unloading processes of the
first and the fourth cycles are shown.

Figure 8 Load-axial displacement diagrams of cyclic axial compression
bending tests on strip of carbon tool steel (JIS:SK2). Carbon tool steel is
42 mm long, 8.7 mm wide and 0.38 mm thick. Loading and unloading
processes of the first and the third cycles are shown.

specimen were determined so that the maximum com-
pression load reached was equal to the maximum load
for the 50 mm long composite strand. The results are
shown in Fig. 8. The load increases with axial displace-
ment and the hysteresis loop is not produced for this test.

It has been known that fabrics when buckled behave
in a very different way from the elastic bar, and a falling
load compression curve and a hysteresis loop during
loading and unloading are produced. This behavior is
interpreted in terms of the internal friction between the
fibers in the intersection [11]. That is, in order to change
the curvature of the fabrics, the applied bending mo-
ment should be larger than the frictional couple needed
to overcome the internal friction. Thus, a part of the fab-
ric does not change its curvature in a region where the
bending moment is smaller than the frictional couple.
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Figure 9 Load-axial displacement diagrams of cyclic axial compression
bending tests on stainless steel wire (JIS:SUS304). Stainless steel wire is
50 mm long and 1.0 mm in diameter. Loading and unloading processes
of the first and the third cycles are shown.

This region gradually diminishes with increasing
deflection and the load decreases accordingly. A char-
acteristic behavior resulting from the internal friction is
that a large axial displacement remains after returning
the compression load to zero. For the composite strand,
however, the residual axial displacement is quite small.
It is unlikely that the internal friction acts in the com-
posite strand in which the bonding between the fibers
and the matrix resin is considered to be perfect. Thus,
another factor should be considered to interpret the
buckling behavior of the 50 mm long composite strand.

If a material is stressed beyond the proportional limit
during bending, a falling load compression curve is ob-
tained [5]. The cyclic axial compression bending tests
were carried out on a stainless steel wire (JIS:SUS304)
50 mm long and 1.0 mm in diameter. The compression
curves of the first and the third cycles are shown in
Fig. 9. The compression curves of the stainless steel
wire resemble those of the 50 mm long composite
strand. Rapid decrease in load during the first load-
ing, almost constant hysteresis loops during later cycles
and a small residual axial displacement after returning
the compression load to zero are also observed for the
stainless steel wire.

The falling load compression curve of the stainless
steel wire shown above is not due to a local deforma-
tion of the specimen at the loading points. This can be
shown by investigating the compression curves of the
stainless steel wires which were annealed at the ends
of the specimen and at the central portion of the spec-
imen. The normalized compression curves of the un-
treated and annealed stainless steel wires are compared
in Fig. 10. The annealing of the stainless steel wire near
the loading points does not cause significant change
in the compression curve, while the annealing at the
central portion enhances the decrease in the compres-
sion load with axial displacements. This indicates that
the decrease in the compression load with axial dis-
placement is related to the deformation of the specimen
at the central portion.

Figure 10 Load-axial displacement diagrams of cyclic axial compres-
sion bending tests on stainless streel wires (JIS:SUS304) which were
untreated, annealed at both ends and annealed at central portion. Stain-
less steel wires are 50 mm long and 1.0 mm in diameter. Loading and
unloading processes of the first cycle are shown by normalizing loads
with maximum values.

In the loading process of the axial compression bend-
ing tests, an axial compressive stress is imposed on the
specimen up to a critical value, and after the specimen
buckles, the compressive stress increases at the concave
side and decreases at the convex side of the specimen.
The rapid decrease in the compression load during the
first loading of the stainless steel wire is considered
to be due to an inelastic deformation taking place at
the concave side of the specimen where the material
is stressed beyond the proportional limit. Although the
residual axial displacement was small, it was observed
that a slight bending of the untreated stainless steel wire
remained after returning the compression load to zero.
Thus, the shapes of the specimen to which the compres-
sion load is applied during the first and later loading
differ slightly, leading to different compression curves
between the first and later loading. The development of
the hysteresis loop suggests that even at equivalent axial
displacements, the stress distributions in the specimen
differ between loading and unloading.

In the case of the composite strand, the tensile stress-
strain relation is almost elastic up to fracture. The shear
stress arising in the composite strand at the initial stage
of the axial compression bending, where the compres-
sion load decreases markedly, is small. Thus, it is con-
sidered that the falling load compression curve of the
50 mm long composite strand is due to the inelastic
deformation taking place at the concave side of the
composite strand similarly to the stainless steel wire.
The micro-buckling of the fibers in the concave side of
the composite strand is a possible cause of the inelastic
deformation. Although this micro-buckling is not obvi-
ously observed for the resin system used in this study,
a composite strand fabricated with a matrix resin con-
taining a large amount of difunctional diluent showed a
wavy surface at the convex side of the specimen during
the axial compression bending.
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Figure 11 Bending modulus plotted against sonic modulus for PCDI-
based carbon films. Films are 50 mm long, 150 (h) and 250 (•)µm thick
and processed at various temperatures. Regression line with a slope of
0.96 is shown.

4.2. Estimation of bending modulus
For the ideal axial compression bending test of a per-
fectly straight bar, the critical load at which the bar
buckles can be determined accurately, and the bending
modulus is calculated by using Equation 5. The car-
bon films, however, start to bend gradually as shown in
Fig. 5. Thus, the bending modulus of the carbon films
was calculated by using the compression load which
was obtained by linearly extrapolating the compression
curve at later stage to zero axial displacement. Thus
determined bending moduli for the 50 mm long carbon
films with different thicknesses and processing tem-
peratures are compared with sonic moduli in Fig. 11.
The bending modulus almost coincides with the sonic
modulus.

4.3. Estimation of bending strength
With the present experiments, there are two methods
to estimate the bending strength. The first method is to
use the measured deflection directly as the value ofδt in
Equation 17. The second method is to obtain the value
of δt in Equation 17 from the measured axial displace-
mentδa by using Equations 13 and 14. The strengths
estimated by using these two methods are compared
in Fig. 12 for the carbon films with different thick-
nesses and processing temperatures. No marked differ-
ence was found in the results of these two methods.

If the specimen shows a falling load compression
curve as is observed for the 50 mm long composite
strand, using Equation 17 in the estimation of the bend-
ing strength is inaccurate. An inexact but practically
acceptable way to estimate the bending strength for
such specimens is to treat the inelastic deformation of
a part of the specimen as a decrease in the effective
cross-section size of the specimen. The effective cross-
section size is determined by using the modulus of the
specimen as follows: From the deflectionδt or the axial
displacementδa at fracture, the value ofp is calcu-
lated by using Equations 14 or 13, and the value ofk by

Figure 12 Bending strength estimated from axial displacement plotted
against that estimated from deflection for PCDI-based carbon films.
Films are 50 mm long, 150 (h) and 250 (•) µm thick and processed
at various temperatures. Regression line with a slope of 0.95 is shown.

using Equation 6. If the modulusE is known, the effec-
tive moment of inertia of areaI is calculated by using
Equation 4 with the compression load at fracture, and
the effective thicknesst is obtained by using Equation
18 or 20 according to the shape of the cross-section.
With these values ofI and t , the bending strengthσb

is calculated by using Equation 17. As to the value
of the deflectionδt in Equation 17, either the directly
measured value or the value calculated from the axial
displacementδa can be used.

The method shown above is preferable even in the
case where the specimen shows a normal compres-
sion curve in order to minimize error in the bending
strength caused by the error in the measurement of the
cross-section size. The variation in the calculated val-
ues of the bending strength with the variation in the
cross-section diameter is demonstrated in Fig. 13. The

Figure 13 Bending strength of T4 fiber composite strand plotted against
cross-section diameter used for calculation. Composite strand is 100 mm
long and fractured at compression load of 9.4 N and deflection of 36 mm.
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Figure 14 Bending strength estimated from axial displacement plotted
against that estimated from deflection for T4 fiber composite strands.
Composite strands are 50, 70 and 100 mm long with different cross-
section diameters. Regression line with a slope of 0.96 is shown.

bending strength in this figure was calculated for the
T4 fiber 100 mm long composite strand with a fracture
load of 9.4 N and a deflection at fracture of 36 mm.
By considering fluctuation of the cross-section diame-
ter and deviation of the shape of the cross-section from
the circle for the actual composite strands, a relatively
large error would be involved in the bending strength if
it was calculated from the measured value of the cross-
section diameter.

T4 fiber 50, 70 and 100 mm long composite strands
having different cross-section diameters were prepared
by using single fiber tows and dies with different diam-
eters. The bending strengths of these specimens were
estimated by calculating the effective cross-section dia-
meters from the sonic modulus and the deflection or the
axial displacement. The bending strengths estimated
from the axial displacement are compared with those
estimated from the deflection in Fig. 14. The differ-
ence in the bending strengths estimated with these two
methods is small. From the experimental view point,
the measurement of the axial displacement is easier
than the measurement of the deflection. Thus, in the
following, the values of the bending strength of the car-
bon films and the composite strands, estimated from
the axial displacement will be shown.

4.4. Bending modulus and strength
of carbon films

The dependence of the bending strength on the spe-
cimen length is demonstrated in Fig. 15 for the PCDI-
based carbon films with different thicknesses and pro-
cessing temperatures. A higher strength is obtained for
the shorter specimens, while the strength values at these
two different lengths are in proportion. This can be at-
tributed to the size effect of the strength of the carbon
films due to stochastic nature of the existence of cri-
tical flaws, and the changes in the effective specimen
length with the length of the specimen tested as shown
in Section 2.2.

Figure 15 Bending strength of 10 mm long specimen plotted against
that of 50 mm long specimen for PCDI-based carbon films. Films are
150 (h) and 250 (•) µm thick and processed at various temperatures.
Regression line with a slope of 1.4 is shown.

Figure 16 Bending modulus (a) and bending strength (b) plotted against
processing temperature for PCDI-based carbon films. Films are 50 mm
long and 150 (h) and 250 (•) µm thick.

The bending modulus and the bending strength of
the 50 mm long PCDI-based carbon films are plot-
ted against the processing temperature in Fig. 16. The
bending strength and modulus increase with processing
temperature up to about 800◦C. It was observed that
the fracture of the carbon films by the axial compres-
sion bending initiated at the tensile side of the films.
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TABLE I I Modulus and results of axial compression bending tests on composite strands

Fiber Sonic Compression load at Axial displacement
Fiber Length (mm) Diameter (mm) volume fraction modulus (GPa) fracture (N) at fracture (mm)

T4 50 31.7 5.70
70 1.2 0.42 99.6 17.5 13.6
100 9.2 40.6

50 24.4 7.65
70 1.0 0.55 141 13.1 19.4
100 7.4 47.5

H4 50 1.0 0.42 168 29.6 1.47
X5 50 1.2 0.50 305 48.5 0.52

TABLE I I I Bending strength and fracture mode of composite strands

Effective Bending Reduced bending
Fiber Length (mm) Diameter (mm) diameter (mm) strength (GPa) strength (GPa) Fracture mode

T4 50 1.1 2.4± 0.13 5.7 Tensile
70 1.2 1.1 2.3± 0.15 5.5
100 1.1 2.5± 0.26 5.9

50 0.96 3.4± 0.08 6.1
70 1.0 0.95 3.3± 0.17 6.0
100 0.95 3.2± 0.15 5.8

H4 50 1.0 0.98 1.8± 0.05 4.2 Compressive
X5 50 1.2 0.95 1.9± 0.10 3.7 Tensile

The development of the structure of these films during
heat-treatment has been reported in another paper [8].

4.5. Bending strength of composite srands
The bending strengths of T4, H4 and X5 fiber
composite strands were estimated by calculating the
effective cross-section diameters. The experimental
data and the results of calculation are summarized in
Tables II and III. The reduced bending strength shown
in Table III is the strength per unit cross-section area of
fibers, which was calculated by dividing the bending
strength with the fiber volume fraction. The variation of
the reduced bending strength with cross-section diame-
ter and specimen length is small. This suggests that the
bending strength of the specimens showing falling load
compression curves can be practically estimated by us-
ing the effective cross-section diameter at fracture. The
effective cross-section diameters are smaller than the
initial cross-section diameters also for the 70 and 100
mm long composite strands. This is because even for
longer composite strands, the slope of the compression
curve is smaller than the prediction of the theory as is
shown in Fig. 6. It is also known that the length depen-
dence of the strength of the composite strand is smaller
than that of the carbon films in the length region tested.

The fracture of the H4 fiber composite strands ini-
tiated from the compressive side of the specimen. On
the other hand, the fracture of the T4 fiber composite
strands initiated from the tensile side of the specimen.
This was judged from the observation of the fracture
process and the optical microscopy of the longitudinal
cross-section of a specimen to which a compression
load just before fracture had been applied. That is, in
the longitudinal cross-section, fiber breakage was ob-
served only at the convex side of the specimen. For the
X5 fiber composite strands, definite determination of

the fracture mode from the observation of the fracture
process was difficult, though it seemed to be a tensile
fracture judging from the fracture surface. The scanning
electron micrographs of H4, T4 and X5 fiber composite
strands after axial compression bending tests are shown
in Fig. 17.

It is known from comparison between the reduced
bending strength shown in Table III with the tensile
or compressive strength, corresponding to the frac-
ture mode, of the fibers shown in Table I that the re-
duced strength is larger than the strength of the compo-
nent fibers. This is presumably because the composite
strands do not fracture catastrophically at the moment
when the maximum stress near surface of the composite
strands locally reaches the critical values.

The maximum values of the shear stress which arise
in the composite strands at fracture were calculated us-
ing Equation 28. Among the composite strands shown
in Table I, the maximum shear stress is the largest for
the T4 fiber 50 mm long composite strand with a dia-
meter of 1.0 mm and is calculated to be 32.1 MPa. The
smallest value is for the T4 fiber 100 mm long compo-
site strand with a diameter of 1.2 mm and is calculated
to be 12.5 MPa. Since the interfacial shear strength be-
tween this fiber and the epoxy resin estimated with a
fragmentation test is 45.3 MPa [12], it is known that
the interfacial shear fracture did not take place during
the axial compression bending tests on the composite
strands shwon in Table I.

5. Conclusions
The bending strength estimated from the axial dis-
placement and the compression load coincided with
the bending strength estimated from the deflection and
the compression load for both carbon films and carbon
fiber composite strands.
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Figure 17 Scanning electron micrographs of H4 (a), T4 (b) and X5
(c) fiber composite strands after axial compression bending tests.

For the carbon films, the bending strength depended
on the specimen length due to stochastic nature of
the existence of critical flaws. The effective specimen
length was calculated as a function of the length of the
specimen tested. The bending modulus of the carbon

films estimated from the compression load at which
specimens buckled coincided with the sonic modulus.

For the carbon fiber 50 mm long composite strand,
the compression load decreased with increasing axial
displacement. The compression curve of this compo-
site strand was not reversible during loading and un-
loading, and a hysteresis loop was produced. Similar
compression curves were also obtained for the cyclic
axial compression bending tests on a stainless steel
wire. The bending strength of the specimens showing
falling load compression curves can be practically esti-
mated by using the effective cross-section sizes at frac-
ture. This analysis method is also preferable in order to
minimize the error in the bending strength caused by
the error in the measurement of the cross-section size.
The analysis of the shear stress showed that interfacial
shear fracture did not take place during the axial com-
pression bending tests on the composite strands. The re-
duced bending strengths estimated with the axial com-
pression bending tests were larger than the strengths of
the component fibers determined with the tensile and
micro-compression tests.
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